Investor Presentation October 2024 BODVX

-

Safe Harbor Statement

Forward-Looking Statements

This presentation contains forward-looking statements within the meaning of Section 21E of the Securities Exchange Act of 1934, as amended, including, without limitation, statements regarding our ability to build and scale our advanced silicon-anode lithium-ion battery; our production and commercialization timeline; our ability to meet milestones and deliver on our objectives and expectations; our ability to maintain a competitive advantage over other participants in the lithium-ion battery industry; estimates relating to various addressable markets; projected advantages and capabilities of our batteries, including our architecture-first approach, patented manufacturing processes and BrakeFlow Technology, the suitability of our cell architecture for electronic vehicles; our strategy and ability to scale our manufacturing; our ability to leverage our expanded global footprint to support our manufacturing and R&D activities; our projected scale-up timeline for battery production, sampling and smartphone launches; market opportunities and the expansion of our customer base, our estimated demand for greater energy density by smartphone OEMs, the suitability of our batteries to address this demand, and the impact of artificial intelligence on the foregoing; and our ability to meet the expectations of potential and existing customers.

For additional information on these risks and uncertainties and other potential factors that could affect our business and financial results or cause actual results to differ from the results predicted, please refer to our filings with the Securities and Exchange Commission (the "SEC"), including our Form 10-K, Forms 10-Q and other reports and filings. Any forward-looking statements made in this presentation are based on information available to us as of the date hereof and subsequent events may cause these expectations to change. We assume no duty to update these forward-looking statements, where as a result of new information, future events or otherwise.

Non-GAAP Financial Measures

This presentation contains certain adjusted financial measures that have not been prepared in accordance with generally accepted accounting principles in the United States ("GAAP"), including EBITDA, Adjusted EBITDA and Free Cash Flow. Reconciliations of all non-GAAP financial measure results to the most directly comparable GAAP measures are included in the Appendix of this presentation. Enovix believes these non-GAAP financial measures provide useful information to management and investors regarding certain financial and business trends relating to Enovix's financial condition and results of operations. Other companies may calculate similar non-GAAP measures differently. Non-GAAP financial measures have limitations, including that they exclude certain expenses that are required under GAAP, which adjustments reflect the exercise of judgment by management. Management does not consider these nonGAAP measures in isolation or as an alternative to financial measures determined in accordance with GAAP. A reconciliation of fourth quarter projected non-GAAP financial measures are not included in the Appendix (adjusted EBITDA and non-GAAP EPS) because Enovix is unable to predict with reasonable certainty the amount or timing of non-GAAP adjustments used to calculate these projected non-GAAP financial measures without unreasonable effort.

EUGVIX

An Advanced Silicon Battery Company

Innovative Product Architecture

Patented design and manufacturing process for 100% Active Silicon Anode

Step-Change Increase in Battery Capacity Paired with Cycle Life and Charge Rate Requirements

Established Manufacturing Capability

Patented Laser Patterning and Electrode Stacking Processes developed at Fab1 in Silicon Valley

Fab2 in Malaysia opened in 2024 with Agility Line, first high-volume line, and capacity for 3 additional high volume lines

Customers in Mobile, IoT and EV Markets

Contracts with OEM leaders in Smartphones, IoT and EVs. Mass production with multiple customers scheduled in late 2025.

Existing revenues from strategic acquisition of electrode coating and battery manufacturer Routejade.

EU^CVIX

Smartphone Battery Leadership Opens \$12B+ Opportunity

Top Smartphone OEMs by 2023 Units Shipped (1.2B Total)¹

² Company estimates as of April 2024 ³ PhonesData.com 2023 total SKU count for Apple, Samsung, Xiaomi, Oppo, Transsion, Vivo, Honor, and Lenovo

¹ IDC Mobile Phone Tracker, 2023 Smartphone Units

Winning in Smartphones Opens Up Incremental \$12B TAM

Computing '26 Battery TAM: \$4B²

 Company estimates as of January 2023; IDTechEx Forecast Wearable Technology 2021-2031; IDC Worldwide AR/VR Headset Forecast 2022Q3; Avicenne Energy Battery Market for Video Games 2017-2030; Statista Number of IoT Connected Devices Worldwide from 2019-2030; Statista Consumption of Power Tools Worldwide by End User 2015-2027; Avicenne Energy Battery Market for Household Devices 2017-2030
 Company estimates as of January 2023; IDC Personal Computing Devices Market Share Dec 2022; Statista Worldwide Tablet shipment from 2nd quarter 2010 to 3rd quarter 2022

EUQAIX

Enovix Cell Architecture Well-Suited to EVs

Thermal Advantages Enable Fast Charge; Cycle Life and Calendar Life Demonstrated

Advantaged vs. Conventional Cells¹

~10x Improvement in Cell Internal Temperature Gradient

0-80% Charge in 5.2 Minutes Demonstrated

1,500 Cycles Reached with 88% Capacity Retained

Projected 10+ Year Calendar Life based on High Temp Testing

Pursuing Industry Partner Strategy

Actively Working with Industry Leading OEMs – Focus on JV/Licensing. Two deals signed in 2024.

\$523B EV Battery TAM by 2040²

Projected Global EV Battery TAM (\$B)

¹Company estimates based on internal test data shown in Appendix slides 25-27

²The New Oil: Investment Implications of the Global Battery Economy - Morgan Stanley Research, Nov. 15, 2021

EU^CVIX

Smartphone OEMs Have Increased Battery Size to Keep Up

Battery Capacity (mAh) of Leading Smartphones¹

Increasing Battery Size is Limited As Device Size Maxes Out¹

Battery Volume as % of X, Y-Dimensions						
40% 43%						
Battery Volume as % of Z-Dimension						
43%	57 %					
Battery Volume as % of Total Smartphone Volume						
17% 23%						

Growth of AI Apps Threatens All-Day Smartphone Battery Life¹

150x+ Growth for Al...

Global GenAl Output Forecast:

Video/Image Frames (Billions)

...AI-Based Apps Consume Much More Power

Enovix Offers Multi-Generational Jump in Battery Performance

Enovix Smartphone Battery Roadmap Capacity Advantage Over Leading 2023 Smartphone Batteries¹

¹ Methodology: Measured battery capacities and battery cell dimensions for flagship models of nine leading smartphone OEMs (Apple, Samsung, Xiaomi, Vivo, Oppo, Honor, Huawei, Lenovo, and Nokia) adjusted to estimated 0% state-of-charge; Enovix capacities adjusted to same size smartphone battery cell sizes for equivalent comparison at 0% state-of-charge.

Maximizing Silicon to Drive High Energy Density

Silicon Can Theoretically Store Over 2x the Lithium in the Anode than Graphite¹

100% % Active Silicon Content 90% 80% 70% 60% 50% 40% 30% 20% Lithium-Ion 10% Incumbents² 0% 3-7%

ENUVIX

Fully Replacing Graphite with Higher-Performing Silicon Requires an Architecture Change

Enovix 3D Architecture + Integrated Constraint

Conventional Wound Lithium-Ion Cell

¹Silicon anode material capacity: 1,800 mAh/cc (de-rated from theoretical capacity of 2194 mAh/cc for Lithium trapping losses). Graphite anode material capacity: 800 mAh/cc (nominal capacity between host capacity of 841 mAh/cc and lithiated capacity of 719 mAh/cc) ² LG Chem and Panasonic; from UBS Global Research, May 2021

Our Innovative BrakeFlowTM Technology

Off-the-shelf Cell Fire vs. BrakeFlow™

Off-the-shelf cell phone battery at 0:04 min T = 283°C & rising

Enovix BrakeFlow Battery at 4:00 min T(max) = 74.8°C <u>https://vimeo.com/742273681 (</u>full video)

Enovix **BrakeFlow™** Technology

Enovix Manufacturing Process

1. Rolls of anode, cathode and separator are precisely laser patterned

they are punched onto skewers until they equal the width of the cell

4. Busbars are inserted and formed into tabs

5. The cell is pouched and filled with electrolyte

6. The cell is finished and boxed for shipping to customers

Global Footprint to Support World-Class Manufacturing and R&D

Silicon Valley (HQ)

- ✓ Corporate HQ/Center for Innovation
- ✓ Process Engineering
- ✓ Materials Research
- ✓ Automotive R&D

EUGVIX

Hyderabad

- ✓ R&D
- ✓ AI/ML Modeling to Support Materials
- Research

Nonsan City

- ✓ Electrode Coating and Battery Production
- ✓ Two factories
- ✓ Four battery production lines and two coating lines

Penang (Fab2)

- ✓ High-Volume Manufacturing.
- ✓ Space for Four Gen2 Production Lines
- ✓ Agility Line for Customer Qual
- ✓ R&D and Process Engineering

Projected Scale-Up Timeline

2H 2024 Fab2 Production	Q4 2024 EX-2M Sampling	2025 Smartphone Launches	2026+ Scale
Production of EX-1M Cells for 2024 IoT Revenue and 2025 Mass Production Smartphone and IoT Launches	Sampling of EX-2M in Support of 2026 Product Launches	Goal to Launch in Multiple Smartphone Models with Progress Leading to Multiple Lines of Smartphone Battery Production	Target Multiple Lines at Fab2 Generating Multi-Hundred- Million-Dollar Revenue

Target Smartphone Production Line Unit Economics¹

CapEx Per Line	\$60M	Key Drivers						
Throughput	1,650 Units Per Hour	 Unmatched Energy Density Enabling AI Applications Superior Product Roadmap Given Architecture Advantage Continuous Improvement Driving Lower CapEx per Battery Scale Advantages 						
Revenue Per Line	~\$150M							
	Cash Gro							
	50	50%+						
	Estimated Pa							

Leadership Team

Dr. Raj Talluri President & CEO

Experience Micron SVP Qualcomm SVP Texas Instruments GM

Education PhD, Electrical Eng University of Texas

Ajay Marathe COO

Experience Western Digital SVP Lumileds COO AMD CVP

Education MS. Industrial Eng/Ops Research Texas Tech University

Farhan Ahmad CFO

Experience Micron VP Credit Suisse **Applied Materials**

Education Bachelor of Technology, Chemical Engineering, IIT

MBA, UC Berkeley

Arthi Chakravarthy CLO

Lightning eMotors, GC

(Stanford Law Review)

Experience

Deputy GC

Education

BA, Stanford

JD. Stanford Law

Micron

Samira Naraghi VP – Product Management SVP – R&D

Experience Meta AWS Qualcomm IDT

Education MS, Electrical Eng (analog IC design emphasis) and BS, Electrical Eng, University of Toronto

Dr. Jon Doan

Experience Reel Solar Texas Instruments

Education Ph. D and MS. Materials Science and Engineering, Stanford

BS, Physics, MIT

Independent Directors

T.J. Rodgers Chairman

Greg Reichow

Betsy Atkins

Pegah Ebrahimi

Joseph Malchow

Bernard Gutmann

Founder & 34-yr CEO Cypress Semi	General partner of Eclipse Ventures.	CEO: Baja Corporation	COO Cisco Collaboration at	Founding Partner, HNVR Technology	ON Semi CFO
Chairman of	' VP-Production at	SunPower director at IPO	Cisco Systems Inc.	Investment Management	37-year career at ON and
SunPower IPO Enphase Director in	Tesla; Ran solar autoline fab at	Board Member,	COO Morgan Stanley's Global	Board Member,	predecessor companies
turnaround	SunPower	Wynn Resorts, SolarEdge, SL	Technology Banking	Enphase Energy, National Civic Arts	(Motorola, SCI)
Dartmouth: Physics & Chemistry	Fab Quality Director at	Green Realty; former Volvo	MIT: Economics &	Society	Worchester Polytechnic
Stanford: MSEE, PhDEE	Cypress Semi	board member	Mathematics	Dartmouth: A.B. Stanford: J.D.	Institute: Management Engineering
Joined Board 2012	Joined Board 2020	Joined Board 2021	Joined Board 2021	Joined Board 2023	Joined Board 2023

In-Ion

Financials

ENOVIX CORPORATION CONDENSED CONSOLIDATED STATEMENTS OF OPERATIONS

(In thousands, except share and per share amounts) (Unaudited)

		Quarters Ended		Fiscal Years-to-Date Ended				
	S	eptember 29, 2024		October 1, 2023	S	eptember 29, 2024		October 1, 2023
Revenue	\$	4,317	\$	200	\$	13,357	\$	263
Cost of revenue		4,959		16,809		16,454		43,292
Gross margin		(642)		(16,609)		(3,097)		(43,029)
Operating expenses:								
Research and development		24,220		13,508		102,073		53,810
Selling, general and administrative		20,744		17,245		61,176		61,207
Impairment of equipment		—		—		—		4,411
Restructuring cost		3,661		3,021		41,807		3,021
Total operating expenses		48,625		33,774		205,056		122,449
Loss from operations		(49,267)		(50,383)		(208,153)		(165,478)
Other income (expense):								
Change in fair value of common stock warrants		29,899		31,320		17,359		4,140
Interest income		2,859		4,326		9,745		9,942
Interest expense		(1,718)		(1,557)		(5,068)		(2,827)
Other income (loss), net		(2,217)		109		(1,509)		129
Total other expense, net	-	28,823		34,198	-	20,527		11,384
Loss before income tax benefit		(20,444)		(16,185)		(187,626)		(154,094)
Income tax expense (benefit)		2,194		_		(2,544)		_
Net loss		(22,638)		(16,185)		(185,082)		(154,094)
Net loss attributable to non-controlling interests	_	(102)		_		(306)		_
Net loss attributable to Enovix	\$	(22,536)	\$	(16,185)	\$	(184,776)	\$	(154,094)
Net loss per share attributable to Enovix shareholders, basic	\$	(0.13)	\$	(0.10)	\$	(1.07)	\$	(0.98)
Weighted average number of common shares outstanding, basic		176,680,578		159,829,716		172,393,869		157,559,138
Net loss per share attributable to Enovix shareholders, diluted	\$	(0.30)	\$	(0.29)	\$	(1.07)	\$	(1.00)
Weighted average number of common shares outstanding, diluted		176,872,382		161,371,417		172,393,869		158,260,393

EUGVIX

Financials

GAAP TO NON-GAAP RECONCILIATION

(In thousands, except share and per share amounts) (Unaudited)

Below is a reconciliation of net income (loss) on a GAAP basis to the Non-GAAP EBITDA and Adjusted EBITDA financial measures for the periods presented below:

	Quarters Ended			Fiscal Years-to			o-Date Ended	
	Sep	otember 29, 2024		October 1, 2023	Sej	ptember 29, 2024	(October 1, 2023
Net loss attributable to Enovix	\$	(22,536)	\$	(16,185)	\$	(184,776)	\$	(154,094)
Interest expense		1,718		1,557		5,068		2,827
Income tax expense (benefit)		2,194				(2,544)		
Depreciation and amortization		6,500		2,900		37,417		10,000
EBITDA		(12,124)		(11,728)		(144,835)		(141,267)
Stock-based compensation expense (1)		16,722		13,274		47,414		57,473
Change in fair value of common stock warrants		(29,899)		(31,320)		(17,359)		(4,140)
Inventory step-up						1,907		_
Impairment of equipment								4,411
Restructuring cost ⁽¹⁾		3,661		3,021		41,807		3,021
Acquisition cost				1,115		—		1,115
Adjusted EBITDA	\$	(21,640)	\$	(25,638)	\$	(71,066)	\$	(79,387)

⁽¹⁾ \$0.1 million and \$1.2 million of stock-based compensation expense are included in the restructuring cost line of the table above for the quarter and fiscal year-to-date ended September 29, 2024, respectively. \$0.4 million of stock-based compensation expense is included in the restructuring cost line of the table above for the quarter and fiscal year-to-date ended October 1, 2023.

GAAP TO NON-GAAP RECONCILIATION

(In thousands, except share and per share amounts) (Unaudited)

Below is a reconciliation of Net cash used in operating activities to the Free Cash Flow financial measures for the periods presented below (in thousands):

	Fiscal Year	Fiscal Years-to-Date Ended			
	September 2 2024),	October 1, 2023		
Net cash used in operating activities	\$ (92,67	5) \$	6 (77,408)		
Capital expenditures	(59,83	0)	(32,979)		
Free Cash Flow	\$ (152,50	5) \$	6 (110,387)		

⁽¹⁾ We define "Free Cash Flow" as (i) Net cash from operating activities less (ii) capital expenditures, net of proceeds from disposals of property and equipment, all of which are derived from our condensed consolidated statements of cash flow. The presentation of non-GAAP Free Cash Flow is not intended as an alternative measure of cash flows from operations, as determined in accordance with GAAP. We believe that this financial measure is useful to investors because it provides investors to view our performance using the same tool that we use to gauge our progress in achieving our goals and it is an indication of cash flow that may be available to fund investments in future growth initiatives.

EUGVIX

EV: Reoriented Electrodes Delivers Excellent Thermal Performance 33X Higher* thermal conductivity to large face of prismatic cell

2.5C Fast Charging Temperature Profile

Cell Dimensions: 173 x 115 x 32 mm

EUQAIX

*Assumptions: 2.5C charging 0-80% SOC, 27.6 W/mK in-plane conductivity, 0.82 W/mK thru-plane conductivity, 1046 J/kg heat capacity, 2.4g/cc density, 25 ohm cm2 constant ASI, 4 mAh/cm2 electrode loading, 336 uM wave pair thickness, 1-dimensional heat transfer constrained to electrodes

EV: Architecture & Chemistry for Fast Charge

0.27 Ah EV test cells achieved 0-80% state-of-charge in 5.2 minutes

NMC-622 CELL DATA

267 mAh (29 mm x 17 mm x 3.4 mm) 541 Wh/l packaged energy density (889 Wh/l core) 695 Wh/l modeled packaged energy density for 55Ah cell 4.2 – 2.5V Cell Voltage @ 30 deg. C 6C CCCV Charge – 1C Discharge with periodic multi-rate diagnostic discharge steps

EU UNX

EV: High Cycle and Calendar Life

Demonstrated development cell cycle life >1,500 cycles and >10-year projected lifetime¹

Cycle #

88% capacity retention after 1,500 cycles

Program Collaborators

0.27Ah NMC-622 Cycle Life

ENUVIX

267 mAh (29 mm x 17 mm x 3.4 mm) 541 Wh/l packaged energy density (889 Wh/l core) 695 Wh/l modeled packaged energy density for 55Ah cell 4.2 – 2.5V Cell Voltage @ 30 deg. C 0.33C CCCV Charge – 0.33C Discharge with periodic multi-rate diagnostic discharge steps

ansforming ENERGY

Multi-component model predicting Si integrity

shi Optimized electrolytes for Si anodes

0.27Ah NMC-622 – Calendar Life

267 mAh (29 mm x 17 mm x 3.4 mm) 541 Wh/I packaged energy density (889 Wh/I core) 695 Wh/I modeled packaged energy density for 55Ah cell 0.33C CCCV Charge – 0.33C Discharge after storage at various temperatures at TOC voltage of 4.2V

Projecting >10-year calendar life based on high

Thank You

